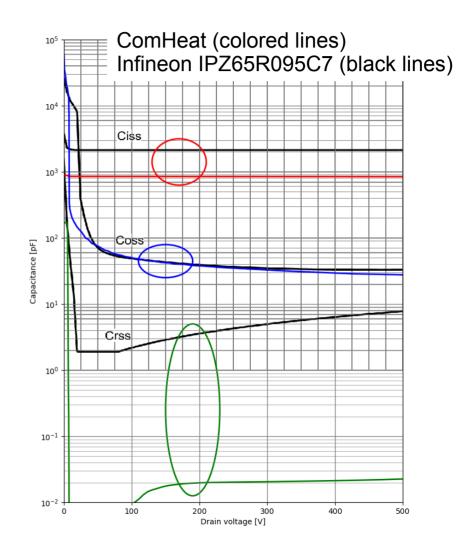


ComHeat Microwave

- Comheat Microwave founded 2005 with main strategy to develop new high voltage devices in combination with CMOS and to support the transfer of these devices into production.
- Dr. Klas-Håkan Eklund
 - Been in the industry for 50 years with main focus to develop high voltage devices in combination with CMOS.
 - Jointly founded (Key founder) NASDAQ listed USD 500m company
 - 20+ patents jointly or solely, related to Power Semiconductors.
- Dr. Lars Vestling
 - Thesis: Design and modeling of high-frequency LDMOS transistors.
 - Working 20 years in the industry mainly developing high-voltage silicon devices.

New LDMOS - Status of the design


- LDMOS device design ready to be implemented in silicon
- Concept is competitive for voltages from 60V up to 900V.
- Product specifications and SPICE-models available.

Capacitance

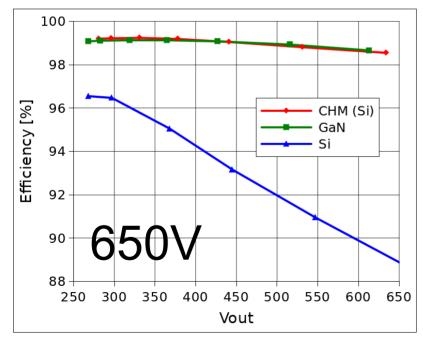
- Capacitance comparison with similar discrete Si-device (Infineon CoolMOS).
- Miller capacitance (Crss) much lower.

ME-L	DMOS I	Power T	ransiste	pr - 650V	
	Con	Heat Mic	owave		
	N	vember 23.	0000		
	NO	vember 23,	2020		
1 Electrical charact T _j =25 °C unless otherwise spec 1.1 Maximum ratings					
Parameter	Symbol	Value	Unit	Test conditions	
Gate voltage	VG	±5	V	Test conditions	
MOSFET dv/dt ruggedness	$\frac{VG}{dv/dt}$	±0 50	V/ns		
MOSTET uv/ut tuggetness	ueyui	00	v/108		
1.2 Static characteristic	5				
Parameter	Symbol	Value	Unit	Test conditions	
On-resistance	R _{DS(on)}	1.2	0	$V_G=5 \text{ V}, I_D=1 \text{ A}, T_i=25 \text{ °C}$	
	**DS(00)	2.0		$V_G=5 V, I_D=1 A, T_i=125 ^{\circ}C$	
Drain current	I _{D(sat)}	3.2	А	$V_D=20 V, V_G=5 V$, see fig. 1	
Zero gate voltage drain	IDSS	<1	μΑ	$V_D = 600 \text{ V}, V_G = 0 \text{ V}, T_i = 25 ^{\circ}\text{C}$	
current	-000	<100		$V_D = 600 \text{ V}, V_G = 0 \text{ V}, T_i = 125 \circ 0$	
Threshold voltage	$V_{GS(th)}$	0.46	V	$V_{GS}=V_{DS}, I_D=1 \text{ mA}, T_i=25 \circ C$	
0	- 05(u)	0.46	_	$V_{GS}=V_{DS}, I_D=1 \text{ mA}, T_i=125^{\circ}$	
Breakdown voltage	V _{br(off)}	>650	V	$V_G=0 V$	
Pinch voltage	VP	6.5	V	$V_G=0 V$	
1.3 Dynamic characteris Parameter	Symbol	Value	Unit	Test conditions	
Input capacitance	Ciss	73	pF		
Output capacitance	Coss	4.2	pF	$V_G=0$ V, $V_D=100$ V, 1 MHz,	
Reverse transfer capacitance	Cras	0.001	pF	see fig. 2-3	
Equivalent output capacitance (energy related)	C _{o(er)}	3.3	pF	$V_G=0$ V, $V_D=0$ V to 480 V	
Equivalent output	Co(tr)	37	pF	$V_G=0$ V, $V_D=0$ V to 480 V	
capacitance (time related)					
Switching times for resisti					
	T _{d(on)}	0.15	ns	$V_{DD}=300 \text{ V}, V_G=5 \text{ V}, R_L=150 \Omega$	
Turn-on delay time	Trise	3.1 4.2	ns		
Rise time			ns		
Rise time Turn-off delay time	$T_{d(off)}$				
Rise time Turn-off delay time Fall time	$T_{d(off)}$ T_{fall}	4.2	ns		
Rise time Turn-off delay time Fall time Switching times for induct	$T_{d(off)}$ T_{fall} ive load	3.7			
Rise time Turn-off delay time Fall time Switching times for induct Turn-on delay time	$T_{d(off)}$ T_{fall} ive load $T_{d(on)}$	3.7 0.15	ns	V	
Rise time Turn-off delay time Fall time Switching times for induct	$T_{d(off)}$ T_{fall} ive load	3.7		$V_{DD}=300 \text{ V}, V_G=5 \text{ V}, I_D=1.0 \text{ A}$	

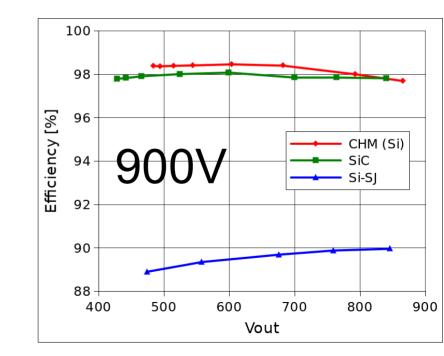
Electrical data comparison - 650V

	ComHeat 650V (LDMOS)	Si SJ (vertical) IPZ65R095C7	SiC (vertical) C3M0060065D	GaN (lateral) GS66504B
R _{DS,on}	100mΩ	100mΩ	100mΩ	100mΩ
$V_{GS(Th)}$	0.5V	3.5V	2.3V	1.7V
C _{iss}	730pF	2000pF	600pF	120pF
C _{oss}	42pF	31pF	90pF	80pF
C _{rss}	0.01pF	2pF	9pF	0.8pF
Q _g	7nC	48nC	28nC	3nC

All devices normalized to 100m Ω , capacitances at V_G=0V, V_D=100V

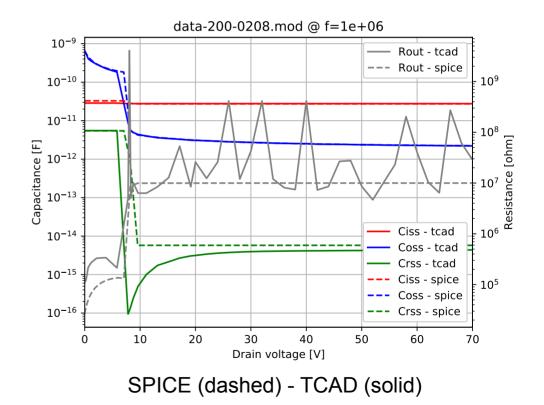


Electrical data comparison – 200V


	ComHeat 200V	Si-LDMOS NXP MRFX1K80H
R _{DS,on}	80mΩ	80mΩ
V _{(BR)DS}	230V	193V
V _{GS(Th)}	0.5V	2.5V
C _{iss}	380pF	760pF
C _{oss}	25pF	203pF
C _{rss}	0.04pF	2.9pF

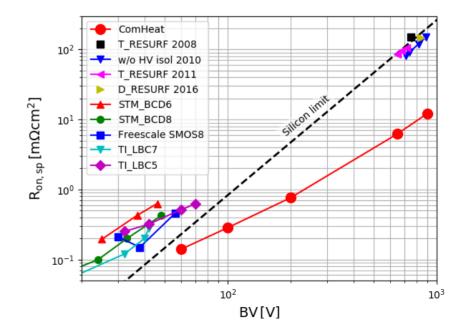
Comparison with GaN (650V) and SiC (900V)

- Boost converter, 1 MHz
- Vin = 250V and 400V


• SPICE-simulation

SPICE model

- A compact model is developed and implemented in SPICE.
- Model parameters extracted from TCAD data.
- Plot shows comparison between TCAD (solid) and model (dashed).

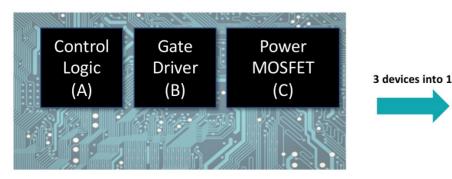


Manufacturing requirements

 New LDMOS preliminary based on Silicon using strandard available equipment and processes used in semiconductor industry.

Device costs

• Die size reduction by a factor 5 and higher yield means lower manufacturing cost and less expensive packaging.


Functionality benefits

- Key capacitances will reduce with die size but especially the Miller capacitance has been further reduced to 1-10% which reduces power consumption, switching times but also increases reliability and robutness.
- Gate charge can be designed to be very low, partly due to lower gate voltages. Low gate charge is very important for efficient switching and simplifies gate drive design.

System Integration

- Compability with CMOS even down to state-of-the-art with 1.8V gate drive logic and system integration on-chip.
- The device can be driven directly from CMOS. No need for an additional power supply.
- Actually, the concept can replace 3 devices with 1 device
 - discrete power device, gate driver and CMOS logic

